
..........

Livingstone Real
Time Interface

Autonomy and Robotics Area
NASA Ames Research Center

http://ace.arc.nasa.gov/postdoc/livingstone

Autonomy and Robotics Area
Computational Sciences Division
M/S 269-3
NASA Ames Research Center
Moffett Field, CA 94301
POC: kurien@ptolemy.arc.nasa.gov

2

Table of Contents
Introduction ... 3

Problem Statement .. 3

Interaction Cycle Between Livingstone and Real-time......................4

Interface .. 4

Startup ...4

Commanding ..5

Asserting Monitoring Information ...5

Recovery...5

Required Response Functions ...6

Parameters ...6

Other Functions ...7

Utilities ...7

Cancelling commands ..7

Example Session ... 7

Case 1: ...7

Case 2: ...8

Regression Testing and Empirical Evaluation Support 8

Real-time Interface Internal Objects 8

* * *...8

Submodule Interfaces .. 8

Debugging ..9

Key Algorithms and Formal Analysis 9

Performance Analysis .. 9

3

..........

Remote Agent
Autonomy Toolbox
Specification
Livingstone Realtime Interface
November 17, 1998

Introduction

This is a specification document, in progress, for Livingstone’s Real-time Interface. This
document includes specifications for:

• The real-time external interface,

• Regression testing and empirical evaluation framework,

• real-time interface internal data structures,

• Internal interfaces between major subsystems,

• Description of key algorithms and theorems,

• Performance statistics on representative examples.

Problem Statement

In the previous section we saw how to set up commands and monitors which act as an
interface to the Livingstone model. We also introduced the functions do-cmd and do-
monitors which would inject a command or set of monitors into the model and do a diagnosis.
These functions are convenient for debugging a model but poor for actually running a
physical system. They are synchronous, in that they take a command and all of the monitors
that came with it, perform a diagnosis, then returns an answer. When controlling a real
system, it may take several seconds or more for a command to take effect and all of the
monitor changes associated with it to become available. In addition, while one command is
being processed unrelated monitors which indicate an unrelated failures may become
available, and we would like to diagnose that failure immediately.

To accomodate the asynchronous nature of commands an monitors being exchanged with a
physical device Livingstone has a set of interfaces which allow the user to inject new
commands and monitors into the system as they come in. Livingstone then tracks things such
as whether an incoming monitor value is associated with a command which is currently
executing or whether it represents a failure which must be diagnosed and reacted to
immediately.

4

 It provides a queue onto which you can place incoming commands and monitor values as
well as requests for recovery. These items are processed by Livingstone and any recovery
actions or changes in system state are sent back via two reporting functions that the user
must define.

These functions can be integrated with Lisp code which communicates with the outside
world via sockets, CLASH, CORBA and so on to allow Livingstone to interface with separate
programs running on the same or another computer. CLASH, sockets and a variant of
CORBA have all been tested and sample code is available.

Livingstone provides an interface for easing the connection of Livingstone to an external real-
time process (an external program, another Lisp thread, etc).

This interface provides a message queue which the external process uses to inform.
Livingstone of incoming commands and monitor values, and sends requests to Livingstone for
state information and recover plans. These items are processed by Livingstone and any
recovery actions or changes in system state are sent back via two reporting functions that the
user must define.

Interaction Cycle Between Livingstone and Real-time

The basic interaction cycle consists of:

1. spawn-queue-dispatcher. This creates a queue to send
information and requests to Livingstone.

2. As monitor data becomes available the real-time system, calls queue-
monitor-value to specify each monitor value, followed by queue-
start-monitors-and-time, to tell Livingstone to process these
monitor values, and by what time these values will stabilize.

3. As commands are given, call queue-start-command-and-time.
This informs Livingstone that a command has been invoked, and the time
by which the command's effects will have stabilized.

4. As Livingstone performs mode identification, it will report any state
changes inferred from the monitor data and commands by invoking
report-transitions, a function provided by the real-time user.

If a recovery is needed, the real-time system calls queue-generate-recovery with a
specification of the goals to be achieved and constraints to be maintained. Livingstone returns
the recovery plan by invoking report-recovery-actions, a function provided by
user.

Interface

Startup

spawn-dispatcher [Function]

This function creates the queue for mediating messages between the real-time and
Livingstone. It must be called before any of the queueing functions below are called.

5

This function starts a second thread that will run the actual Livingstone inference engine.
The calling thread returns immediately, and can be used to call the QUEUE- functions
described below to inject commands and observations into the model.

queue-request-full-state id [Function]
Reports all Livingstone state information via report-transitions . This function
can be called at any time after spawn-dispatcher but it is typically called before any
commands are given to ensure Livingstone and other software components are
synchronized as to the current state of the controlled system.

Commanding

queue-start-command-and-time command value id [Function]
&key time system

Called when a new command is about to be issued by the real-time. Livingstone starts a
timeout for command completion to occur after time delay, where time defaults to
default-command-timeout . It then accumulates any changes in monitor values
during that time and after the delay determines the next state (diagnosis). It reports any
relevant state changes via report-transitions .

The purpose of the time delay is to make sure that the control system stabilizes, before
trying to determine the next state – this avoids race conditions. also processes monitor
changes during the time interval, to Any monitor changes that come in before the
specified time expires which Livingstone predicts should change during the execution of
the command will not cause a diagnosis. If the monitor are not expected to change as a
result of the command, then Livingstone will start a separate diagnosis and return the
results via report-transitions. and system defaults to *system* .

Asserting Monitoring Information

queue-monitor-value monitor value [Function]

Call to stack up monitor values for processing by the function below (e.g., if a data
packet with 4 monitor values are received).

queue-start-monitors-and-time id &key time system [Function]

Call when a set of monitor values is ready for processing. That is, if you receive data for
4 monitors from some external source, call queue-monitor-value for each, then
call queue-start-monitors-and-time . Livingstone determines if the monitor
changes are expected because of a command which is currently running and does not start
separate processing for those. If the monitor changes were not expected, Livingstone
starts a timeout of the specified time, does a diagnosis, and reports via report-transitions.
time defaults to *default-command-timeout* , and system defaults to
system .

Recovery

queue-generate-recovery recovery-request id [Function]

6

Generates a recovery which when executed will put the modeled system into a state
which entails the recovery request. The recovery is reported via report-recovery-
actions .

 id will be passed back when the recovery actions are reported and can be any integer.

recovery-request is a list of proposition-monitor values which must be achieved by the
recovery. The recovery request is in terms of proposition-monitors instead of raw
Livingstone propositions so that small changes to the implmentation of the Livingstone
model will not break the interface.

Note the tuples valid for report-transitions and queue-generate-
recovery are declared inside of Livingstone as proposition-monitors .

Required Response Functions

This interface assumes that the following functions are defined:

report-transitions transitions prop-transitions [Function]
unique-id

This function takse the list of transitions resulting from an event, the prop monitor
transitions, and the unique integer ID of an event. It should be defined by the user such
that it sends the transitions off to whatever piece of software is interested in them.

unique-id will be the same id as passed with the command or monitor insertion that
caused the state change.

transitions will be a list of transitions. Each transition is a list of the previous mode of a
component and the current mode of a component. The mode is a structure specific to an
instance of a component and has a pointer back to the specific component of which it is a
part.

prop-transitions will be a list of the prop monitor values which became true as a result of
the transition.

report-recovery-actions recovery-exists [Function]
recovery-action unique-id

recovery-exists will be T if a recovery could be found.

unique-id will be the same id as passed with the recovery request.

recovery-actions will be a list of recovery actions. Each recovery will be a list of a
transition name from the model (eg turn-off) and the specific component mode that
should undergo the transition. The mode is a structure specific to an instance of a
component and has a pointer back to the specific component of which it is a part. If the
recovery requested was entailed by the current state of the system recovery-actions will
be NIL.

Parameters

default-command-timeout [Parameter]

7

Default timeout when waiting for quiescence after a command is executed. The default is
5.0 seconds.

default-monitor-timeout [Parameter]
Default timeout when waiting for quiescence after a monitor is received. The default is
3.0 seconds.

Other Functions

Utilities

unkeywordize item &key package

Takes an atom or list and converts any keywords to symbols in the package. This is
useful because the model usually is not constructed with keywords, and any symbols in it
are in the tp package. Symbols that come out of CLASH or other communication
packages are often keywords. package defaults to :tp .

Cancelling commands

The following functions are only needed in special cases where we know that a command
may not get invoked. In this case we do not want to start a command and automatically set up
a timeout for its termination. An example is a command that passes over a bus and might not
actually get to the device.

Queue-start-command will do the processing to set up the command. If the command
reaches the destination, a timeout can be set up to end the command. If not, abort-
command will undo the processing performed by queue-start-command to set up the
command.

queue-start-command command value

queue-abort-command command value

Example Session

 Monitor data available from the hardware will most likely be in the form of some real valued
or integer measurements from the system. Since Livingstone monitors operate variables
with a small number of discrete values there will need to be some filtering code which
converts the actual measurements into ranges. This code can be simple (eg thresholding
into positive, negative and zero) or quite complex. This filtering could be done inside of
the Lisp image in which Livingstone runs, meaning the raw values are transported into
Lisp, or or outside of it, in which case discrete values are sent.

 Case 1:

 The low level control software of the hardware reads a number of sensors on the hardware,
packages up the data into one packet and sends it to Lisp. In Lisp, a function determines
which part of the packet corresponds to the measured position of switch one, converts
that value from 0/1 to off/on. The function determines if the value is different from the
last received value and if so calls

8

 (queue-monitor-value '(switch-sensor switch1) 'on)

 After all relevant information is extracted from the data packet, the following call is made to
begin processing of the monitors (id and timeout values are representative only).

 (queue-start-monitors-and-time 999 :time 3)

 Case 2:

 The low level control software of the hardware reads a number of sensors on the hardware,
packages up the data into one packet and sends it to Labview. Labview does some
filtering on the data to eliminate transients or detect some interesting feature. It then
converts the real data into the discrete values Livingstone expects. Labview then sends
an encoding of the discrete value and the Livingstone monitor it is associated with
through a socket to Lisp (eg "(stable (current-draw switch1))")

 Inside Lisp the data from the socket is decoded and used to call

 (queue-monitor-value '(current-draw switch1) 'stable)

 (queue-start-monitors-and-time 999 :time 3)

Regression Testing and Empirical Evaluation Support

To Do:

• To be written.

Real-time Interface Internal Objects

* * *

Submodule Interfaces

The real-time interface is decomposed into *** subsystems:

• *** ***

The following subsections define the current interfaces of each subsystem, respectively. At
this point the division is still fluid, and does not constitute a design specification. However, a
submodule design specification is important in terms of sharing code between different
implementations.

Some of the submodule interface functions are part of the real-time external interface, or part
of the object specifications. Detailed comments are included here for only those functions
that are not already part of the external real-time interface and object specifications.

9

Debugging

Key Algorithms and Formal Analysis

Performance Analysis

